スキップしてメイン コンテンツに移動

Model of the MitoNEET [2Fe−2S] Cluster Shows Proton Coupled Electron Transfer

Model of the MitoNEET [2Fe−2S] Cluster Shows Proton Coupled Electron Transfer

 Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
 Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
J. Am. Chem. Soc.2017139 (2), pp 701–707
DOI: 10.1021/jacs.6b09180
Publication Date (Web): January 5, 2017
Copyright © 2017 American Chemical Society

Abstract

MitoNEET is an outer membrane protein whose exact function remains unclear, though a role of this protein in redox and iron sensing as well as in controlling maximum mitochondrial respiratory rates has been discussed. It was shown to contain a redox active and acid labile [2Fe–2S] cluster which is ligated by one histidine and three cysteine residues. Herein we present the first synthetic analogue with biomimetic {SN/S2} ligation which could be structurally characterized in its diferric form, 52–. In addition to being a high fidelity structural model for the biological cofactor, the complex is shown to mediate proton coupled electron transfer (PCET) at the {SN} ligated site, pointing at a potential functional role of the enzyme’s unique His ligand. Full PCET thermodynamic square schemes for the mitoNEET model 52– and a related homoleptic {SN/SN} capped [2Fe–2S] cluster 42– are established, and kinetics of PCET reactivity are investigated by double-mixing stopped-flow experiments for both complexes. While the N—H bond dissociation free energy (BDFE) of 5H2– (230 ± 4 kJ mol–1) and the free energy ΔG°PCET for the reaction with TEMPO (−48.4 kJ mol–1) are very similar to values for the homoleptic cluster 4H2– (232 ± 4 kJ mol–1, –46.3 kJ mol–1) the latter is found to react significantly faster than the mitoNEET model (data for 5H2–k= 135 ± 27 M–1 s–1, ΔH = 17.6 ± 3.0 kJ mol–1, ΔS = −143 ± 11 J mol–1 K–1, and ΔG = 59.8 kJ mol–1 at 293 K). Comparison of the PCET efficiency of these clusters emphasizes the relevance of reorganization energy in this process.

[Question]
先行研究研究のCluster(Rieske model)と、今回の研究のCluster(mitoNEET model)において、 ΔG°PCET の値の違いは何によるものか。
(Previous work(Rieske model): 3b, 2, This work(mitoNEET model): 4, 5)



[Answer]
Rieske model clusterの3bや2ではプロトン化された種において、N原子上のプロトンが共鳴安定化されるため、そのような共鳴安定化がされないmito NEET model clusterのほうが ΔG°PCET が負に大きくなると考えられる。
 ΔG°PCET で比較した場合、Rieske model cluster(3b, 2)よりもmito NEET model(4, 5)の方が負に大きいため、PCETが熱力学的には起こりやすいと考えられる。しかし、実際の速度定数kを比較すると、mitoNEET model(5)が最も遅い反応であった。これは5において、{SN}で配位されたFe部位で電子密度の局在化がより起こり、電子移動に伴うFe-S中心の構造変化が起こりにくいためであると考えられる。したがって、再配列エネルギー(λ)(マーカス理論:ΔG= (ΔG° λ) /4λ)が大きくなり、したがって活性化エネルギーΔGも大きくなるため、mitoNEET model cluster(5)において最も小さな速度定数が得られた。

コメント

Yuma Morimoto さんの投稿…
電位より、塩基性度が大きく効いている系、ということでしょうか。
> 3bや2ではプロトン化された種において、N原子上のプロトンが共鳴安定化されるため、・・・
プロトンが共鳴安定化、というのはよくわかんないです。
プロトン化で生じる正電荷が共鳴安定化されるということでしょうか。
で、生成物が安定化されると、結果として反応性も高くなると思います。どこかで勘違いしてますか?
Yuma Morimoto さんの投稿…
その後の、ギブス自由エネルギー変化が大きいにも関わらず、反応が遅かった理由の考察までしてくれてありがとうございます。

> 電子移動に伴うFe-S中心の構造変化が起こりにくいためである
と、ありますが、電子移動に伴う構造変化が局所化し、電子移動前後の構造変化が大きくなるために、再配列エネルギー λ が大きくなったのかな、と思います。コメントまで。

人気の投稿

雑誌会(200115)回答_藤田

Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94  µ B ( S  =1/2) 正: µ eff =  1.88  µ B  ( S  =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 ) 3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 ...

A low-spin Fe(iii) complex with 100-ps ligand- to-metal charge transfer photoluminescence

Authors: Pavel Chábera, Yizhu Liu, Om Prakash, Erling Thyrhaug, Amal El Nahhas, Alireza Honarfar, Sofia Essén, Lisa A. Fredin, Tobias C. B. Harlang, Kasper S. Kjær, Karsten Handrup, Fredric Ericson, Hideyuki Tatsuno, Kelsey Morgan, Joachim Schnadt, Lennart Häggström, Tore Ericsson, Adam Sobkowiak, Sven Lidin, Ping Huang, Stenbjörn Styring, Jens Uhlig, Jesper Bendix, Reiner Lomoth, Villy Sundström, Petter Persson & Kenneth Wärnmark Nature 543, 695–699 (30 March 2017) doi:10.1038/nature21430 Received 03 August 2016 Accepted 23 January 2017 Published online 29 March 2017 https://www.nature.com/nature/journal/v543/n7647/pdf/nature21430.pdf 解説記事: Making iron glow 蛍光を発する鉄(III)錯体ができたというNatureの論文です。 だからなんだよ?と思うかもしれませんが、鉄の錯体を光らせることは非常に難しいとされてきました。 ルテニウム(II)やイリジウム(III)といった第五、第六周期の遷移金属錯体では、高い発光量子収率をもった(より、効率的に光る)錯体が数多く知られています。 一方で、配位子場分裂がルテニウムなどと比べて小さな鉄錯体では、MLCT励起で生成した電子配置と、鉄のtg電子が一つだけegへと励起した電子配置が近いため、非常に早く電子が鉄へと戻ってきてしまうためです ( Anal.Chem.63, 829A–837A ...

Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases

https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00187?rand=gzylk8tq Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars Department of Process Research & Development, MRL, Merck & Co., Inc. United States Org. Process Res. Dev. 2019, ASAP メルクの社員さんの論文です。DBUなどのアミジン、あるいはグアニジン構造を持った塩基が、ゆっくりと加水分解していることを報告しています。薬の研究中にそれに気付いて、ちゃんと報告せねばならんと思ったと書いてあります(偉い人たちですね)。 上の表の塩基について実験しています。微量の水から水酸化物イオンが出て、それにより加水分解が始まるので、たとえば水溶液にしたときに、pHが11.6以下なら分解しないそうです。 TBDという塩基、DBUより強いので、使ってみても良さそうですね。

Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis

Daniel Langford, Inigo Göttker-Schnetmann, Florian P. Wimmer, Larissa A. Casper, Philip Kenyon, Rainer F. Winter, Stefan Mecking* Publication Date:July 3, 2019 https://doi.org/10.1021/acs.organomet.9b00332 Copyright © 2019 American Chemical Society Organometallics の論文です。ニッケル触媒の仕事、というよりカウンターアニオンとして新たに合成された、ペンタフルオロスルファニル基(-SF6)を有するボレートが渋いので、紹介します。 近年、トリフルオロメチル基は高い電子求引性を有する置換基として大活躍していますが、同様に高い電子求引性を有するSF6基は、"スーパー"トリフルオロメチル基としての地位を確立しつつあるそうです。 我々のグループでもよく用いているテトラフェニルボレートアニオン(BPh4-)は、優れた対アニオンですが、酸化剤と反応してしまうこともあることが知られています。カーリンらのグループ?からは、フェニル基の3,5位に、電子求引性の高いCF3を導入した錯体を用いると、活性種の安定性が大きく変わることを報告しているようです。このようなアニオンはBArFと呼ばれて親しまれています(下図左)。 本論文で著者らは、対応するグリニャール試薬とBCl3を反応させることで、下図右のカウンターアニオン、S-BArFを新たに合成しています。高い電子求引性による電荷の分散効果と、立体によるホウ素中心への攻撃の阻害が期待されます。 250°Cくらいまで、熱には安定なようです。筆者らは、ニッケル錯体の対アニオンとしてこのアニオンを利用したところ、重合触媒活性があがったと報告しています。ニッケル錯体と、対アニオンの相互作用が小さいこと、対アニオンの安定性が高いことなどの理由があると思います(このあたりはちゃんと読んでいません)。 計算したところ、HOMOの非局在化具合はBArF、S-BArFとあまり変わらない(それぞれ、92%、93%)ようですが、LUMOがS-BArFで...

High-Energy-Resolution Fluorescence-Detected X‑ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase

Rebeca G. Castillo,† Rahul Banerjee,‡ Caleb J. Allpress,§ Gregory T. Rohde,§ Eckhard Bill,† Lawrence Que, Jr.,*,§ John D. Lipscomb,*,‡ and Serena DeBeer*,† † Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany ‡ Department of Biochemistry, Molecular Biology, and Biophysics and § Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States http://pubs.acs.org/doi/10.1021/jacs.7b09560 HERFD XASを用いて、sMMOの活性部位の構造について議論しています。 まだ実験、計算が必要だが、オープンコアの構造を有していると著者らは述べています。