- Contributed by Chad A. Mirkin, February 20, 2015 (sent for review January 19, 2015; reviewed by Matthew B. Francis and Chengde Mao)
Significance
Due to their unique structures and diverse catalytic functionalities, proteins represent a nearly limitless set of precursors for constructing functional supramolecular materials. However, programming the assembly of even a single protein into ordered superlattices is a difficult task, and a generalizable strategy for coassembling multiple proteins with distinct surface chemistries, or proteins and inorganic nanoparticles, does not currently exist. Here, we use the high-fidelity interactions characteristic of DNA–DNA “bonds” to direct the assembly of two proteins into six unique superlattices composed of either a single protein, multiple proteins, or proteins and gold nanoparticles. Significantly, the DNA-functionalized proteins retain their native catalytic functionalities both in the solution and crystalline states.
Abstract
The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.
コメント