スキップしてメイン コンテンツに移動

A Balancing Act: Stability versus Reactivity of Mn(O) Complexes

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
Acc. Chem. Res., Article ASAP
DOI: 10.1021/acs.accounts.5b00273
Publication Date (Web): September 9, 2015
Copyright © 2015 American Chemical Society
*E-mail: dpg@jhu.edu.

 Special Issue

Published as part of the Accounts of Chemical Research special issue “Synthesis in Biological Inorganic Chemistry”.
Biography
Heather Neu received her B.S. degree in Chemistry from the University of Wisconsin-Superior in 2007, where she conducted independent undergraduate research through the McNair Scholars program under the direction of Professor Troy S. Bergstedt. In 2010, she earned her M.S. from the University of Minnesota Duluth, with Professor Victor N. Nemykin. She is currently a Ph.D. candidate at Johns Hopkins University working with Professor David P. Goldberg.
Biography
Regina Baglia received her B.S. degree in Biochemistry from Temple University in 2011, where she conducted undergraduate research through the Diamond Research Scholars program under the direction of Professor Michael J. Zdilla. She is currently a Ph.D. candidate at Johns Hopkins University working with Professor David P. Goldberg.
Biography
David Goldberg received his B.A. degree from Williams College (1989) and a Ph.D. degree from M.I.T (1995). After completing a postdoctoral fellowship at Northwestern University, he moved to Johns Hopkins University in 1998, where he is currently a Professor of Chemistry.

Abstract

Abstract Image
Conspectus
A large class of heme and non-heme metalloenzymes utilize O2 or its derivatives (e.g., H2O2) to generate high-valent metal–oxo intermediates for performing challenging and selective oxidations. Due to their reactive nature, these intermediates are often short-lived and very difficult to characterize. Synthetic chemists have sought to prepare analogous metal–oxo complexes with ligands that impart enough stability to allow for their characterization and an examination of their inherent reactivity. The challenge in designing these molecules is to achieve a balance between their stability, which should allow for their in situ characterization or isolation, and their reactivity, in which they can still participate in interesting chemical transformations. This Account focuses on our recent efforts to generate and stabilize high-valent manganese–oxo porphyrinoid complexes and tune their reactivity in the oxidation of organic substrates.
Dioxygen can be used to generate a high-valent MnV(O) corrolazine (MnV(O)(TBP8Cz)) by irradiation of MnIII(TBP8Cz) with visible light in the presence of a C–H substrate. Quantitative formation of the MnV(O) complex occurs with concomitant selective hydroxylation of the benzylic substrate hexamethylbenzene. Addition of a strong H+ donor converted this light/O2/substrate reaction from a stoichiometric to a catalytic process with modest turnovers. The addition of H+ likely activates a transient MnV(O) complex to achieve turnover, whereas in the absence of H+, the MnV(O) complex is an unreactive “dead-end” complex. Addition of anionic donors to the MnV(O) complex also leads to enhanced reactivity, with a large increase in the rate of two-electron oxygen atom transfer (OAT) to thioether substrates. Spectroscopic characterization (Mn K-edge X-ray absorption and resonance Raman spectroscopies) revealed that the anionic donors (X) bind to the MnV ion to form six-coordinate [MnV(O)(X)] complexes. An unusual “V-shaped” Hammett plot for the oxidation of para-substituted thioanisole derivatives suggested that six-coordinate [MnV(O)(X)] complexes can act as both electrophiles and nucleophiles, depending on the nature of the substrate. Oxidation of the MnV(O) corrolazine resulted in the in situ generation of a MnV(O) π-radical cation complex, [MnV(O)(TBP8Cz•+)]+, which exhibited more than a 100-fold rate increase in the oxidation of thioethers. The addition of Lewis acids (LA; ZnII, B(C6F5)3) to the closed-shell, diamagnetic MnV(O)(TBP8Cz) stabilized a paramagnetic valence tautomer MnIV(O)(TBP8Cz•+)(LA), which was characterized as a second π-radical cation complex by NMR, EPR, UV-vis, and high resolution cold spray ionization MS. The MnIV(O)(TBP8Cz•+)(LA) complexes are able to abstract H from phenols and exhibit a rate enhancement of up to ∼100-fold over the parent MnV(O) valence tautomer. In contrast, a large decrease in rate is observed for OAT for the MnIV(O)(TBP8Cz•+)(LA) complexes. The rate enhancement for hydrogen atom transfer (HAT) may derive from the higher redox potential for the π-radical cation complex, while the large rate decrease seen for OAT may come from a decrease in electrophilicity for an MnIV(O) versus MnV(O) complex.



コメント

人気の投稿

雑誌会(200115)回答_藤田

Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94  µ B ( S  =1/2) 正: µ eff =  1.88  µ B  ( S  =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 ) 3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 ...

A low-spin Fe(iii) complex with 100-ps ligand- to-metal charge transfer photoluminescence

Authors: Pavel Chábera, Yizhu Liu, Om Prakash, Erling Thyrhaug, Amal El Nahhas, Alireza Honarfar, Sofia Essén, Lisa A. Fredin, Tobias C. B. Harlang, Kasper S. Kjær, Karsten Handrup, Fredric Ericson, Hideyuki Tatsuno, Kelsey Morgan, Joachim Schnadt, Lennart Häggström, Tore Ericsson, Adam Sobkowiak, Sven Lidin, Ping Huang, Stenbjörn Styring, Jens Uhlig, Jesper Bendix, Reiner Lomoth, Villy Sundström, Petter Persson & Kenneth Wärnmark Nature 543, 695–699 (30 March 2017) doi:10.1038/nature21430 Received 03 August 2016 Accepted 23 January 2017 Published online 29 March 2017 https://www.nature.com/nature/journal/v543/n7647/pdf/nature21430.pdf 解説記事: Making iron glow 蛍光を発する鉄(III)錯体ができたというNatureの論文です。 だからなんだよ?と思うかもしれませんが、鉄の錯体を光らせることは非常に難しいとされてきました。 ルテニウム(II)やイリジウム(III)といった第五、第六周期の遷移金属錯体では、高い発光量子収率をもった(より、効率的に光る)錯体が数多く知られています。 一方で、配位子場分裂がルテニウムなどと比べて小さな鉄錯体では、MLCT励起で生成した電子配置と、鉄のtg電子が一つだけegへと励起した電子配置が近いため、非常に早く電子が鉄へと戻ってきてしまうためです ( Anal.Chem.63, 829A–837A ...

Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases

https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00187?rand=gzylk8tq Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars Department of Process Research & Development, MRL, Merck & Co., Inc. United States Org. Process Res. Dev. 2019, ASAP メルクの社員さんの論文です。DBUなどのアミジン、あるいはグアニジン構造を持った塩基が、ゆっくりと加水分解していることを報告しています。薬の研究中にそれに気付いて、ちゃんと報告せねばならんと思ったと書いてあります(偉い人たちですね)。 上の表の塩基について実験しています。微量の水から水酸化物イオンが出て、それにより加水分解が始まるので、たとえば水溶液にしたときに、pHが11.6以下なら分解しないそうです。 TBDという塩基、DBUより強いので、使ってみても良さそうですね。

Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis

Daniel Langford, Inigo Göttker-Schnetmann, Florian P. Wimmer, Larissa A. Casper, Philip Kenyon, Rainer F. Winter, Stefan Mecking* Publication Date:July 3, 2019 https://doi.org/10.1021/acs.organomet.9b00332 Copyright © 2019 American Chemical Society Organometallics の論文です。ニッケル触媒の仕事、というよりカウンターアニオンとして新たに合成された、ペンタフルオロスルファニル基(-SF6)を有するボレートが渋いので、紹介します。 近年、トリフルオロメチル基は高い電子求引性を有する置換基として大活躍していますが、同様に高い電子求引性を有するSF6基は、"スーパー"トリフルオロメチル基としての地位を確立しつつあるそうです。 我々のグループでもよく用いているテトラフェニルボレートアニオン(BPh4-)は、優れた対アニオンですが、酸化剤と反応してしまうこともあることが知られています。カーリンらのグループ?からは、フェニル基の3,5位に、電子求引性の高いCF3を導入した錯体を用いると、活性種の安定性が大きく変わることを報告しているようです。このようなアニオンはBArFと呼ばれて親しまれています(下図左)。 本論文で著者らは、対応するグリニャール試薬とBCl3を反応させることで、下図右のカウンターアニオン、S-BArFを新たに合成しています。高い電子求引性による電荷の分散効果と、立体によるホウ素中心への攻撃の阻害が期待されます。 250°Cくらいまで、熱には安定なようです。筆者らは、ニッケル錯体の対アニオンとしてこのアニオンを利用したところ、重合触媒活性があがったと報告しています。ニッケル錯体と、対アニオンの相互作用が小さいこと、対アニオンの安定性が高いことなどの理由があると思います(このあたりはちゃんと読んでいません)。 計算したところ、HOMOの非局在化具合はBArF、S-BArFとあまり変わらない(それぞれ、92%、93%)ようですが、LUMOがS-BArFで...

High-Energy-Resolution Fluorescence-Detected X‑ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase

Rebeca G. Castillo,† Rahul Banerjee,‡ Caleb J. Allpress,§ Gregory T. Rohde,§ Eckhard Bill,† Lawrence Que, Jr.,*,§ John D. Lipscomb,*,‡ and Serena DeBeer*,† † Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany ‡ Department of Biochemistry, Molecular Biology, and Biophysics and § Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States http://pubs.acs.org/doi/10.1021/jacs.7b09560 HERFD XASを用いて、sMMOの活性部位の構造について議論しています。 まだ実験、計算が必要だが、オープンコアの構造を有していると著者らは述べています。