スキップしてメイン コンテンツに移動

Controlled ligand distortion and its consequences for structure, symmetry, conformation and spin-state preferences of iron(II) complexes

Nicole Kroll,a Kolja Theilacker,b Marc Schoknecht,a Dirk Baabe,c
Dennis Wiedemann,a Martin Kaupp,*b Andreas Grohmann*a and Gerald Hörner*a

a and b Technische Universität Berlin, Institut für Chemie, Germany.

Dalton Trans. 2015, 44, 19232

Abstract
The ligand-field strength in metal complexes of polydentate ligands depends critically on how the ligand backbone places the donor atoms in three-dimensional space. Distortions from regular coordination geo- metries are often observed. In this work, we study the isolated effect of ligand-sphere distortion by means of two structurally related pentadentate ligands of identical donor set, in the solid state (X-ray diffraction, 57Fe-Mössbauer spectroscopy), in solution (NMR spectroscopy, UV/Vis spectroscopy, conductometry), and with quantum-chemical methods. Crystal structures of hexacoordinate iron(II) and nickel(II) com- plexes derived from the cyclic ligand L1 (6-methyl-6-(pyridin-2-yl)-1,4-bis(pyridin-2-ylmethyl)-1,4-di- azepane) and its open-chain congener L2 (N1,N3,2-trimethyl-2-(pyridine-2-yl)-N1,N3-bis(pyridine- 2-ylmethyl) propane-1,3-diamine) reveal distinctly different donor set distortions reflecting the differ- ences in ligand topology. Distortion from regular octahedral geometry is minor for complexes of ligand L2, but becomes significant in the complexes of the cyclic ligand L1, where trans elongation of Fe−N bonds cannot be compensated by the rigid ligand backbone. This provokes trigonal twisting of the ligand field. This distortion causes the metal ion in complexes of L1 to experience a significantly weaker ligand field than in the complexes of L2, which are more regular. The reduced ligand-field strength in complexes of L1 translates into a marked preference for the electronic high-spin state, the emergence of confor- mational isomers, and massively enhanced lability with respect to ligand exchange and oxidation of the central ion. Accordingly, oxoiron(IV) species derived from L1 and L2 differ in their spectroscopic properties and their chemical reactivity.

阿部くんがやっているような、リガンドの剛直性による配位子場の歪みが錯体に与える影響を検討した仕事です。結晶構造、メスバウアーやDFTを使って、歪みのが配位子場に与える効果を明らかにしています。20-30 kJ/mol、環状配位子の場合は配位子場が弱くなっている、とconclusionでは書いてありました。
基本的には磁性屋さんのグループのようです。この論文のイントロは”entatic”の話になっていて、阿部くんのICを読んでるのではないかな、と思いました(残念ながら、引用はしてくれていません)。

論文の中から、参考になりそうなリファレンス
Eur. J. Inorg. Chem. 2012, 3000
過去の、Grohmannらの仕事。複核の銅錯体を作っており、環状のアミンとオープンチェーンの錯体で酸素との反応性を比べている(配位子のデザインはこの研究とはちがう)。オープンチェーンの場合はビス-μ-オキサイドが観測されるが、環状配位子の場合は中間体が見えない。しかし、残念ながらリガンドの構造の差が、あんまりポイントとして出ていない。
・P. Comba, Coord. Chem. Rev. 2000, 200, 217.
ドイツの生物無機化学をやっているピーターコンバによる、Entatic Stateに関するレビュー。Entatic について引用をつける場合は、"Metalloenzymes: the entatic nature of their active sites. B. L. Vallee and R. J. P. Williams, Proc. Natl. Acad. Sci. U. S. A., 1968, 59, 498." とともに、引用するとよいかも。




環状アミンのほうの合成スキームは既報。ここでもウチの論文の引用はない。
(Eur. J. Inorg. Chem. 2013, 958 より)


コメント

人気の投稿

雑誌会(200115)回答_藤田

Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94  µ B ( S  =1/2) 正: µ eff =  1.88  µ B  ( S  =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 ) 3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 ...

A low-spin Fe(iii) complex with 100-ps ligand- to-metal charge transfer photoluminescence

Authors: Pavel Chábera, Yizhu Liu, Om Prakash, Erling Thyrhaug, Amal El Nahhas, Alireza Honarfar, Sofia Essén, Lisa A. Fredin, Tobias C. B. Harlang, Kasper S. Kjær, Karsten Handrup, Fredric Ericson, Hideyuki Tatsuno, Kelsey Morgan, Joachim Schnadt, Lennart Häggström, Tore Ericsson, Adam Sobkowiak, Sven Lidin, Ping Huang, Stenbjörn Styring, Jens Uhlig, Jesper Bendix, Reiner Lomoth, Villy Sundström, Petter Persson & Kenneth Wärnmark Nature 543, 695–699 (30 March 2017) doi:10.1038/nature21430 Received 03 August 2016 Accepted 23 January 2017 Published online 29 March 2017 https://www.nature.com/nature/journal/v543/n7647/pdf/nature21430.pdf 解説記事: Making iron glow 蛍光を発する鉄(III)錯体ができたというNatureの論文です。 だからなんだよ?と思うかもしれませんが、鉄の錯体を光らせることは非常に難しいとされてきました。 ルテニウム(II)やイリジウム(III)といった第五、第六周期の遷移金属錯体では、高い発光量子収率をもった(より、効率的に光る)錯体が数多く知られています。 一方で、配位子場分裂がルテニウムなどと比べて小さな鉄錯体では、MLCT励起で生成した電子配置と、鉄のtg電子が一つだけegへと励起した電子配置が近いため、非常に早く電子が鉄へと戻ってきてしまうためです ( Anal.Chem.63, 829A–837A ...

Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases

https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00187?rand=gzylk8tq Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars Department of Process Research & Development, MRL, Merck & Co., Inc. United States Org. Process Res. Dev. 2019, ASAP メルクの社員さんの論文です。DBUなどのアミジン、あるいはグアニジン構造を持った塩基が、ゆっくりと加水分解していることを報告しています。薬の研究中にそれに気付いて、ちゃんと報告せねばならんと思ったと書いてあります(偉い人たちですね)。 上の表の塩基について実験しています。微量の水から水酸化物イオンが出て、それにより加水分解が始まるので、たとえば水溶液にしたときに、pHが11.6以下なら分解しないそうです。 TBDという塩基、DBUより強いので、使ってみても良さそうですね。

Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis

Daniel Langford, Inigo Göttker-Schnetmann, Florian P. Wimmer, Larissa A. Casper, Philip Kenyon, Rainer F. Winter, Stefan Mecking* Publication Date:July 3, 2019 https://doi.org/10.1021/acs.organomet.9b00332 Copyright © 2019 American Chemical Society Organometallics の論文です。ニッケル触媒の仕事、というよりカウンターアニオンとして新たに合成された、ペンタフルオロスルファニル基(-SF6)を有するボレートが渋いので、紹介します。 近年、トリフルオロメチル基は高い電子求引性を有する置換基として大活躍していますが、同様に高い電子求引性を有するSF6基は、"スーパー"トリフルオロメチル基としての地位を確立しつつあるそうです。 我々のグループでもよく用いているテトラフェニルボレートアニオン(BPh4-)は、優れた対アニオンですが、酸化剤と反応してしまうこともあることが知られています。カーリンらのグループ?からは、フェニル基の3,5位に、電子求引性の高いCF3を導入した錯体を用いると、活性種の安定性が大きく変わることを報告しているようです。このようなアニオンはBArFと呼ばれて親しまれています(下図左)。 本論文で著者らは、対応するグリニャール試薬とBCl3を反応させることで、下図右のカウンターアニオン、S-BArFを新たに合成しています。高い電子求引性による電荷の分散効果と、立体によるホウ素中心への攻撃の阻害が期待されます。 250°Cくらいまで、熱には安定なようです。筆者らは、ニッケル錯体の対アニオンとしてこのアニオンを利用したところ、重合触媒活性があがったと報告しています。ニッケル錯体と、対アニオンの相互作用が小さいこと、対アニオンの安定性が高いことなどの理由があると思います(このあたりはちゃんと読んでいません)。 計算したところ、HOMOの非局在化具合はBArF、S-BArFとあまり変わらない(それぞれ、92%、93%)ようですが、LUMOがS-BArFで...

High-Energy-Resolution Fluorescence-Detected X‑ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase

Rebeca G. Castillo,† Rahul Banerjee,‡ Caleb J. Allpress,§ Gregory T. Rohde,§ Eckhard Bill,† Lawrence Que, Jr.,*,§ John D. Lipscomb,*,‡ and Serena DeBeer*,† † Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany ‡ Department of Biochemistry, Molecular Biology, and Biophysics and § Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States http://pubs.acs.org/doi/10.1021/jacs.7b09560 HERFD XASを用いて、sMMOの活性部位の構造について議論しています。 まだ実験、計算が必要だが、オープンコアの構造を有していると著者らは述べています。