Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation
Nature Chemistry 7, 871–878 (2015) doi:10.1038/nchem.2353
Received 06 March 2015
Accepted 19 August 2015
Published online 28 September 2015
Gavin W. Collie, Karolina Pulka-Ziach, Caterina M. Lombardo, Juliette Fremaux, Frédéric Rosu, Marion Decossas, Laura Mauran, Olivier Lambert, Valérie Gabelica, Cameron D. Mackereth & Gilles Guichard
Affiliations
Université de Bordeaux, CNRS, and etc.
Abstract
The design and construction of biomimetic self-assembling systems is a challenging yet potentially highly rewarding endeavour that contributes to the development of new biomaterials, catalysts, drug-delivery systems and tools for the manipulation of biological processes. Significant progress has been achieved by engineering self-assembling DNA-, protein- and peptide-based building units. However, the design of entirely new, completely non-natural folded architectures that resemble biopolymers (‘foldamers’) and have the ability to self-assemble into atomically precise nanostructures in aqueous conditions has proved exceptionally challenging. Here we report the modular design, formation and structural elucidation at the atomic level of a series of diverse quaternary arrangements formed by the self-assembly of short amphiphilic α-helicomimetic foldamers that bear proteinaceous side chains. We show that the final quaternary assembly can be controlled at the sequence level, which permits the programmed formation of either discrete helical bundles that contain isolated cavities or pH-responsive water-filled channels with controllable pore diameters.
このオリゴウレアは、ペプチドと同様に側鎖を変えることができ、両親媒性を持ったものにすることができます。疎水性残基と親水性残基の並びをコントロールすることで、高次構造のコントロールができたそうです。
The design and construction of biomimetic self-assembling systems is a challenging yet potentially highly rewarding endeavour that contributes to the development of new biomaterials, catalysts, drug-delivery systems and tools for the manipulation of biological processes. Significant progress has been achieved by engineering self-assembling DNA-, protein- and peptide-based building units. However, the design of entirely new, completely non-natural folded architectures that resemble biopolymers (‘foldamers’) and have the ability to self-assemble into atomically precise nanostructures in aqueous conditions has proved exceptionally challenging. Here we report the modular design, formation and structural elucidation at the atomic level of a series of diverse quaternary arrangements formed by the self-assembly of short amphiphilic α-helicomimetic foldamers that bear proteinaceous side chains. We show that the final quaternary assembly can be controlled at the sequence level, which permits the programmed formation of either discrete helical bundles that contain isolated cavities or pH-responsive water-filled channels with controllable pore diameters.
ペプチドはアミノ酸がアミド結合を介して繋がってできるオリゴマーであり、側鎖の種類を選ぶことでヘリックスやシートなどの二次構造をコントロールすることができます。また、ヘリックスやシートをがさらに高次の構造を形成することで、さまざまな機能を発言します。
そのコンセプトを拡張したのが、この論文になります。
筆者らは、アミド結合のかわりに尿素結合を繰り返し単位として用いた"オリゴウレア"という材料が、自己集積してさらに複雑な構造を形成することを報告しています。このオリゴウレアは、ペプチドと同様に側鎖を変えることができ、両親媒性を持ったものにすることができます。疎水性残基と親水性残基の並びをコントロールすることで、高次構造のコントロールができたそうです。
コメント