Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
With the aim of understanding the basis for the high rate of hydrogen atom abstraction (HAT) from dihydroanthracene (DHA) by the complex LCuOH (1; L = N,N′-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide), the bond dissociation enthalpy of the reaction product LCu(H2O) (2) was determined through measurement of its pKa and E1/2 in THF solution. In so doing, an equilibrium between 2 and LCu(THF) was characterized by UV–vis and EPR spectroscopy and cyclic voltammetry (CV). A high pKa of 18.8 ± 1.8 and a low E1/2 of −0.074 V vs Fc/Fc+ in THF combined to yield an O–H BDE for 2 of 90 ± 3 kcal mol–1 that is large relative to values for most transition metal oxo/hydroxo complexes. By taking advantage of the increased stability of 1 observed in 1,2-difluorobenzene (DFB) solvent, the kinetics of the reactions of 1 with a range of substrates with varying BDE values for their C–H bonds were measured. The oxidizing power of 1 was revealed through the accelerated decay of 1 in the presence of the substrates, including THF (BDE = 92 kcal mol–1) and cyclohexane (BDE = 99 kcal mol–1). CV experiments in THF solvent showed that 1 reacted with THF via rate-determining attack at the THF C–H(D) bonds with a kinetic isotope effect of 10.2. Analysis of the kinetic and thermodynamic data provides new insights into the basis for the high reactivity of 1 and the possible involvement of species like 1 in oxidation catalysis.
コメント