Review
Copper Active Sites in Biology
- Figures
- Reference QuickView
- Add to ACS ChemWorx
Department of Chemistry, Stanford University, Stanford, California 94305, United States
Chem. Rev., Article ASAP
DOI: 10.1021/cr400327t
Publication Date (Web): March 3, 2014
Copyright © 2014 American Chemical Society
*E-mail: edward.solomon@stanford.edu.
- 1. Introduction
- 2. Electronic Structure and Spectroscopy
- 2.1. Cu(I) Sites
- 2.1.1. Cu(I) K-Edge XAS
- 2.1.2. K-β Emission
- 2.2. Mononuclear Cu(II) Sites
- 2.2.1. Ligand Field Theory (LFT)
- 2.2.2. Cu(II) Ground States
- 2.2.3. Ligand Field Excited States
- 2.2.4. Charge Transfer Excited States
- 2.2.5. XAS K-Edge
- 2.2.6. XAS L-Edge
- 2.2.7. XMCD
- 2.3. Binuclear Copper Sites
- 2.3.1. Two Copper(II) Atoms: Magnetic Coupling
- 2.3.2. Copper(II)–Copper(I)
- 2.4. Higher Nuclearity Sites: Spin Frustration and Antisymmetric Exchange
- 2.5. Electronic Structure Calculations
- 2.5.1. Ab Initio Wave Function Methods
- 2.5.2. Density Functional Methods
- 2.5.3. Quantum Mechanics–Molecular Mechanics (QM–MM) Methods
- 2.5.4. Application to Cu Sites
- 2.1. Cu(I) Sites
- 3. Copper Active Sites That Activate Dioxygen
- 3.1. Reversible O2 Binding: Overcoming the Spin-Forbiddenness
- 3.1.1. Enzymology
- 3.1.2. Thermodynamics and Kinetics
- 3.1.3. Structure
- 3.1.4. Electronic Structure
- 3.1.5. Mechanism
- 3.2. Oxygen Activation by Coupled Binuclear Active Sites: Polyphenol Oxidases and Phenol Oxygenases
- 3.2.1. Enzymology
- 3.2.2. Kinetics
- 3.2.3. Structure
- 3.2.4. Electronic Structure
- 3.2.5. Mechanism
- 3.3. O2 Activation for H-Atom Abstraction: Noncoupled Binuclear Copper Enzymes (Role of Exchange Coupling in Reactivity)
- 3.3.1. Enzymology
- 3.3.2. Kinetics
- 3.3.3. Structure
- 3.3.4. Electronic Structure and Spectroscopy
- 3.3.5. Molecular Mechanism
- 3.3.6. Exchange Coupling Contribution to Reactivity
- 3.4. O2 Activation by a Mononuclear Cu Site: Cofactor Biogenesis in Galactose Oxidase
- 3.4.1. Enzymology
- 3.4.2. Kinetics
- 3.4.3. Structure
- 3.4.4. Electronic Structure
- 3.4.5. Mechanism
- 3.5. Particulate Methane Monooxygenase and Related Systems: H-Atom Abstraction from Methane
- 3.5.1. Enzymology
- 3.5.2. Kinetics
- 3.5.3. Structure
- 3.5.4. Electronic Structure
- 3.5.5. Mechanism
- 3.6. Structure/Function Correlations of O2 Activation by Copper Sites
- 3.7. Structure/Function Correlations of O2 Reduction to H2O
- 3.7.1. Multicopper Oxidases
- 3.7.2. Heme–Copper Respiratory Oxidases
- 3.7.3. Reduction of O2 to H2O
- 3.1. Reversible O2 Binding: Overcoming the Spin-Forbiddenness
- 4. Substrate Activation by Cu(II) Sites
- 4.1. Quercetinase
- 4.1.1. Enzymology
- 4.1.2. Kinetics
- 4.1.3. Structure
- 4.1.4. Spectroscopy and Electronic Structure
- 4.1.5. Molecular Mechanism
- 4.2. Cofactor Biogenesis in the Copper Amine Oxidases
- 4.2.1. Enzymology
- 4.2.2. Kinetics
- 4.2.3. Structure
- 4.2.4. Spectroscopy and Electronic Structure
- 4.2.5. Molecular Mechanism
- 4.3. Nature of Cu(II) Substrate Activation
- 4.1. Quercetinase
- 5. Copper Sites in Bacterial Denitrification
- 5.1. Copper Nitrite Reductase
- 5.2. Nitrous Oxide Reductase
- 5.2.1. Enzymology
- 5.2.2. Kinetics
- 5.2.3. Structure
- 5.2.4. Spectroscopy and Electronic Structure
- 5.2.5. Molecular Mechanism
- 6. Concluding Comments
コメント