スキップしてメイン コンテンツに移動

無機化学:モデル鉄錯体による窒素からアンモニアへの触媒変換


Nature
 
501,
 
84–87
 
 
doi:10.1038/nature12435
Received
 
Accepted
 
Published online
 
窒素(N )のアンモニア(NH )への還元は、生命活動にとって不可欠な変換である。ニトロゲナーゼ酵素中の鉄含有量の多い補因子がこの変換を起こりやすくすることが広く認められているが、その機構は、ほとんど明らかになっていない。特に、N の配位と還元が起こる正確な部位が議論の中心となってきた。合成無機化学では、初めの頃、モリブデンに重点が置かれていた。モリブデンがニトロゲナーゼに不可欠な元素と考えられており、また、構造が明らかなモデルモリブデン錯体がN のNH への化学量論的変換を仲介できることが確認されていたからである。モリブデン中心を持つ、構造の明確な2種類の分子系が、この化学変換を触媒的に行うことができる。しかし現在では、全てのニトロゲナーゼに不可欠な唯一の遷移金属は鉄であると考えられており、最近の生化学的・分光学的データからも、FeMo補因子中のN 結合部位はモリブデンではなく鉄であることが示唆されている。今回我々は、鉄担持トリス(ホスフィン)ボラン錯体が温和な条件下でN のNH 3への還元を触媒すること、ならびにこの反応ではプロトンおよび還元当量の40%以上がN に運ばれることを報告する。我々の結果から、触媒によるNH 形成中に生じるさまざまなN 中間体を単一の鉄部位が安定化し得ることが示唆される。我々のモデル系では、フレキシブルな鉄–ホウ素相互作用によって鉄周辺の幾何構造が調節可能であり、そのことが高効率触媒反応に重要だと思われる。我々は、最近ニトロゲナーゼ補因子に仲間入りした格子間炭素原子も同様な役割を果たしていることを提案する。格子間炭素原子はおそらく、フレキシブルな鉄–炭素相互作用によって単一の鉄部位が酵素触媒反応を仲介することを可能にしているのだろう。

コメント

人気の投稿

雑誌会(200115)回答_藤田

Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94  µ B ( S  =1/2) 正: µ eff =  1.88  µ B  ( S  =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 ) 3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 4.      χ M から反磁性種のモル磁化率 χ Dia M を差し引いて常磁性種の正味のモル磁化率 χ P M を計算する(式3) 2 。 5.      得られた χ P M を式4に代入して有効磁気モーメントを

A low-spin Fe(iii) complex with 100-ps ligand- to-metal charge transfer photoluminescence

Authors: Pavel Chábera, Yizhu Liu, Om Prakash, Erling Thyrhaug, Amal El Nahhas, Alireza Honarfar, Sofia Essén, Lisa A. Fredin, Tobias C. B. Harlang, Kasper S. Kjær, Karsten Handrup, Fredric Ericson, Hideyuki Tatsuno, Kelsey Morgan, Joachim Schnadt, Lennart Häggström, Tore Ericsson, Adam Sobkowiak, Sven Lidin, Ping Huang, Stenbjörn Styring, Jens Uhlig, Jesper Bendix, Reiner Lomoth, Villy Sundström, Petter Persson & Kenneth Wärnmark Nature 543, 695–699 (30 March 2017) doi:10.1038/nature21430 Received 03 August 2016 Accepted 23 January 2017 Published online 29 March 2017 https://www.nature.com/nature/journal/v543/n7647/pdf/nature21430.pdf 解説記事: Making iron glow 蛍光を発する鉄(III)錯体ができたというNatureの論文です。 だからなんだよ?と思うかもしれませんが、鉄の錯体を光らせることは非常に難しいとされてきました。 ルテニウム(II)やイリジウム(III)といった第五、第六周期の遷移金属錯体では、高い発光量子収率をもった(より、効率的に光る)錯体が数多く知られています。 一方で、配位子場分裂がルテニウムなどと比べて小さな鉄錯体では、MLCT励起で生成した電子配置と、鉄のtg電子が一つだけegへと励起した電子配置が近いため、非常に早く電子が鉄へと戻ってきてしまうためです ( Anal.Chem.63, 829A–837A

180523_雑誌会回答(伊藤)

Q. ナフタレンの水酸化の位置選択制について。 A. 今回、ナフタレンのHOMOの軌道について(電子が取られてナフタレンラジカルカチオンが生成して反応が始まるので)考えると、ナフタレンの軌道はベンゼンとブタジエンのπ軌道の相互作用から考えることができます。 ブタジエンの軌道 2 (青) は反対称でかつエネルギーが高く不安定であるため、この軌道がナフタレンのHOMOの主成分となり、ベンゼンの反対称軌道 3,5 (赤) との相互作用を考える必要があることが予想されます。 例えば、軌道 3 と軌道 2 からできる軌道は同符号同士の重なりから結合性が増加し軌道 3 より安定化した軌道Aと逆の理論から不安定化した軌道Bが構成されます。 また第二段階として軌道Bと軌道 5 の相互作用を考えますが、軌道Bは被占軌道で軌道 5 は空軌道であることからHOMO軌道への寄与は軌道Bの方が格段に大きいことがわかります。それゆえ、ナフタレンのHOMO軌道への寄与は単体ブタジエンと同じであることになり、α位がβ位よりも大きいという風になります。 そのため本文中でも示したように1,4-ジナフトールを経て、1,4-ナフトキノンが酸化生成物として得られるのが妥当だと言えます。

Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases

https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00187?rand=gzylk8tq Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars Department of Process Research & Development, MRL, Merck & Co., Inc. United States Org. Process Res. Dev. 2019, ASAP メルクの社員さんの論文です。DBUなどのアミジン、あるいはグアニジン構造を持った塩基が、ゆっくりと加水分解していることを報告しています。薬の研究中にそれに気付いて、ちゃんと報告せねばならんと思ったと書いてあります(偉い人たちですね)。 上の表の塩基について実験しています。微量の水から水酸化物イオンが出て、それにより加水分解が始まるので、たとえば水溶液にしたときに、pHが11.6以下なら分解しないそうです。 TBDという塩基、DBUより強いので、使ってみても良さそうですね。

Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis

Daniel Langford, Inigo Göttker-Schnetmann, Florian P. Wimmer, Larissa A. Casper, Philip Kenyon, Rainer F. Winter, Stefan Mecking* Publication Date:July 3, 2019 https://doi.org/10.1021/acs.organomet.9b00332 Copyright © 2019 American Chemical Society Organometallics の論文です。ニッケル触媒の仕事、というよりカウンターアニオンとして新たに合成された、ペンタフルオロスルファニル基(-SF6)を有するボレートが渋いので、紹介します。 近年、トリフルオロメチル基は高い電子求引性を有する置換基として大活躍していますが、同様に高い電子求引性を有するSF6基は、"スーパー"トリフルオロメチル基としての地位を確立しつつあるそうです。 我々のグループでもよく用いているテトラフェニルボレートアニオン(BPh4-)は、優れた対アニオンですが、酸化剤と反応してしまうこともあることが知られています。カーリンらのグループ?からは、フェニル基の3,5位に、電子求引性の高いCF3を導入した錯体を用いると、活性種の安定性が大きく変わることを報告しているようです。このようなアニオンはBArFと呼ばれて親しまれています(下図左)。 本論文で著者らは、対応するグリニャール試薬とBCl3を反応させることで、下図右のカウンターアニオン、S-BArFを新たに合成しています。高い電子求引性による電荷の分散効果と、立体によるホウ素中心への攻撃の阻害が期待されます。 250°Cくらいまで、熱には安定なようです。筆者らは、ニッケル錯体の対アニオンとしてこのアニオンを利用したところ、重合触媒活性があがったと報告しています。ニッケル錯体と、対アニオンの相互作用が小さいこと、対アニオンの安定性が高いことなどの理由があると思います(このあたりはちゃんと読んでいません)。 計算したところ、HOMOの非局在化具合はBArF、S-BArFとあまり変わらない(それぞれ、92%、93%)ようですが、LUMOがS-BArFで