スキップしてメイン コンテンツに移動

Metal-Based Optical Probes for Live Cell Imaging of Nitroxyl (HNO)

Pablo Rivera-Fuentes and Stephen J. Lippard*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Acc. Chem. Res., 2015, 48 (11), pp 2927–2934
DOI: 10.1021/acs.accounts.5b00388
Publication Date (Web): November 9, 2015




Conspectus
Nitroxyl (HNO) is a biological signaling agent that displays distinctive reactivity compared to nitric oxide (NO). As a consequence, these two reactive nitrogen species trigger different physiological responses. Selective detection of HNO over NO has been a challenge for chemists, and several fluorogenic molecular probes have been recently developed with that goal in mind. Common constructs take advantage of the HNO-induced reduction of Cu(II) to Cu(I). The sensing mechanism of such probes relies on the ability of the unpaired electron in a d orbital of the Cu(II) center to quench the fluorescence of a photoemissive ligand by either an electron or energy transfer mechanism. Experimental and theoretical mechanistic studies suggest that proton-coupled electron transfer mediates this process, and careful tuning of the copper coordination environment has led to sensors with optimized selectivity and kinetics.

The current optical probes cover the visible and near-infrared regions of the spectrum. This palette of sensors comprises structurally and functionally diverse fluorophores such as coumarin (blue/green emission), boron dipyrromethane (BODIPY, green emission), benzoresorufin (red emission), and dihydroxanthenes (near-infrared emission). Many of these sensors have been successfully applied to detect HNO production in live cells. For example, copper-based optical probes have been used to detect HNO production in live mammalian cells that have been treated with H2S and various nitrosating agents. These studies have established a link between HSNO, the smallest S-nitrosothiol, and HNO. In addition, a near-infrared HNO sensor has been used to perform multicolor/multianalyte microscopy, revealing that exogenously applied HNO elevates the concentration of intracellular mobile zinc. This mobilization of zinc ions is presumably a consequence of nitrosation of cysteine residues in zinc-chelating proteins such as metallothionein.

Future challenges for the optical imaging of HNO include devising probes that can detect HNO reversibly, especially because ratiometric imaging can only report equilibrium concentrations when the sensing event is reversible. Another important aspect that needs to be addressed is the creation of probes that can sense HNO in specific subcellular locations. These tools would be useful to identify the organelles in which HNO is produced in mammalian cells and probe the intracellular signaling networks in which this reactive nitrogen species is involved. In addition, near-infrared emitting probes might be applied to detect HNO in thicker specimens, such as acute tissue slices and even live animals, enabling the investigation of the roles of HNO in physiological or pathological conditions in multicellular systems.


ニトロキシル(HNO)を検出するための色素についてのAccountsです。色素に銅(II)錯体をぶら下げていると、色素の蛍光が銅(II)によってクエンチされるのですが、HNOによって銅(II)が銅(I)へと還元されると、色素が光るようになります。

コメント

人気の投稿

雑誌会(200115)回答_藤田

Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94  µ B ( S  =1/2) 正: µ eff =  1.88  µ B  ( S  =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 ) 3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 4.      χ M から反磁性種のモル磁化率 χ Dia M を差し引いて常磁性種の正味のモル磁化率 χ P M を計算する(式3) 2 。 5.      得られた χ P M を式4に代入して有効磁気モーメントを

A low-spin Fe(iii) complex with 100-ps ligand- to-metal charge transfer photoluminescence

Authors: Pavel Chábera, Yizhu Liu, Om Prakash, Erling Thyrhaug, Amal El Nahhas, Alireza Honarfar, Sofia Essén, Lisa A. Fredin, Tobias C. B. Harlang, Kasper S. Kjær, Karsten Handrup, Fredric Ericson, Hideyuki Tatsuno, Kelsey Morgan, Joachim Schnadt, Lennart Häggström, Tore Ericsson, Adam Sobkowiak, Sven Lidin, Ping Huang, Stenbjörn Styring, Jens Uhlig, Jesper Bendix, Reiner Lomoth, Villy Sundström, Petter Persson & Kenneth Wärnmark Nature 543, 695–699 (30 March 2017) doi:10.1038/nature21430 Received 03 August 2016 Accepted 23 January 2017 Published online 29 March 2017 https://www.nature.com/nature/journal/v543/n7647/pdf/nature21430.pdf 解説記事: Making iron glow 蛍光を発する鉄(III)錯体ができたというNatureの論文です。 だからなんだよ?と思うかもしれませんが、鉄の錯体を光らせることは非常に難しいとされてきました。 ルテニウム(II)やイリジウム(III)といった第五、第六周期の遷移金属錯体では、高い発光量子収率をもった(より、効率的に光る)錯体が数多く知られています。 一方で、配位子場分裂がルテニウムなどと比べて小さな鉄錯体では、MLCT励起で生成した電子配置と、鉄のtg電子が一つだけegへと励起した電子配置が近いため、非常に早く電子が鉄へと戻ってきてしまうためです ( Anal.Chem.63, 829A–837A

Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases

https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00187?rand=gzylk8tq Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars Department of Process Research & Development, MRL, Merck & Co., Inc. United States Org. Process Res. Dev. 2019, ASAP メルクの社員さんの論文です。DBUなどのアミジン、あるいはグアニジン構造を持った塩基が、ゆっくりと加水分解していることを報告しています。薬の研究中にそれに気付いて、ちゃんと報告せねばならんと思ったと書いてあります(偉い人たちですね)。 上の表の塩基について実験しています。微量の水から水酸化物イオンが出て、それにより加水分解が始まるので、たとえば水溶液にしたときに、pHが11.6以下なら分解しないそうです。 TBDという塩基、DBUより強いので、使ってみても良さそうですね。

Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis

Daniel Langford, Inigo Göttker-Schnetmann, Florian P. Wimmer, Larissa A. Casper, Philip Kenyon, Rainer F. Winter, Stefan Mecking* Publication Date:July 3, 2019 https://doi.org/10.1021/acs.organomet.9b00332 Copyright © 2019 American Chemical Society Organometallics の論文です。ニッケル触媒の仕事、というよりカウンターアニオンとして新たに合成された、ペンタフルオロスルファニル基(-SF6)を有するボレートが渋いので、紹介します。 近年、トリフルオロメチル基は高い電子求引性を有する置換基として大活躍していますが、同様に高い電子求引性を有するSF6基は、"スーパー"トリフルオロメチル基としての地位を確立しつつあるそうです。 我々のグループでもよく用いているテトラフェニルボレートアニオン(BPh4-)は、優れた対アニオンですが、酸化剤と反応してしまうこともあることが知られています。カーリンらのグループ?からは、フェニル基の3,5位に、電子求引性の高いCF3を導入した錯体を用いると、活性種の安定性が大きく変わることを報告しているようです。このようなアニオンはBArFと呼ばれて親しまれています(下図左)。 本論文で著者らは、対応するグリニャール試薬とBCl3を反応させることで、下図右のカウンターアニオン、S-BArFを新たに合成しています。高い電子求引性による電荷の分散効果と、立体によるホウ素中心への攻撃の阻害が期待されます。 250°Cくらいまで、熱には安定なようです。筆者らは、ニッケル錯体の対アニオンとしてこのアニオンを利用したところ、重合触媒活性があがったと報告しています。ニッケル錯体と、対アニオンの相互作用が小さいこと、対アニオンの安定性が高いことなどの理由があると思います(このあたりはちゃんと読んでいません)。 計算したところ、HOMOの非局在化具合はBArF、S-BArFとあまり変わらない(それぞれ、92%、93%)ようですが、LUMOがS-BArFで

High-Energy-Resolution Fluorescence-Detected X‑ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase

Rebeca G. Castillo,† Rahul Banerjee,‡ Caleb J. Allpress,§ Gregory T. Rohde,§ Eckhard Bill,† Lawrence Que, Jr.,*,§ John D. Lipscomb,*,‡ and Serena DeBeer*,† † Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany ‡ Department of Biochemistry, Molecular Biology, and Biophysics and § Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States http://pubs.acs.org/doi/10.1021/jacs.7b09560 HERFD XASを用いて、sMMOの活性部位の構造について議論しています。 まだ実験、計算が必要だが、オープンコアの構造を有していると著者らは述べています。