Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis
Article
メシチレンがついたビピリジン、昔からあるのかもしれませんが、ビス-、トリス-ビピリジンの生成を抑制するのに適した配位子なのかなと思います。
- Supporting Info ->
- Figures
- Reference QuickView
- Add to ACS ChemWorx
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States
J. Am. Chem. Soc., Article ASAP
DOI: 10.1021/ja501252f
Publication Date (Web): March 18, 2014
Copyright © 2014 American Chemical Society
Abstract
With the goal of improving previously reported Mn bipyridine electrocatalysts in terms of increased activity and reduced overpotential, a bulky bipyridine ligand, 6,6′-dimesityl-2,2′-bipyridine (mesbpy), was utilized to eliminate dimerization in the catalytic cycle. Synthesis, electrocatalytic properties, X-ray diffraction (XRD) studies, and infrared spectroelectrochemistry (IR-SEC) of Mn(mesbpy)(CO)3Br and [Mn(mesbpy)(CO)3(MeCN)](OTf) are reported. Unlike previously reported Mn bipyridine catalysts, these Mn complexes exhibit a single, two-electron reduction wave under nitrogen, with no evidence of dimerization. The anionic complex, [Mn(mesbpy)(CO)3]−, is formed at 300 mV more positive potential than the corresponding state is formed in typical Mn bipyridine catalysts. IR-SEC experiments and chemical reductions with KC8 provide insights into the species leading up to the anionic state, specifically that both the singly reduced and doubly reduced Mn complexes form at the same potential. When formed, the anionic complex binds CO2 with H+, but catalytic activity does not occur until a 400 mV more negative potential is present. The Mn complexes show high activity and Faradaic efficiency for CO2 reduction to CO with the addition of weak Brønsted acids. IR-SEC experiments under CO2/H+ indicate that reduction of a Mn(I)–CO2H catalytic intermediate may be the cause of this unusual “over-reduction” required to initiate catalysis.
コメント