| 
Inorganic Chemistry 
DOI: 10.1021/ic401295t 
Copper complexes of the deprotonated tridentate ligand, N-2-methylthiophenyl-2′-pyridinecarboxamide (HL1), were synthesized and characterized as part of our investigation into the reduction of copper(II) o-nitrito complexes into the related copper nitric oxide complexes and subsequent evolution of NO(g) such as occurs in the enzyme copper nitrite reductase. Our studies afforded the complexes [(L1)CuIICl]n (1), [(L1)CuII(ONO)] (2), [(L1)CuII(H2O)](ClO4)·H2O (3·H2O), [(L1)CuII(CH3OH)](ClO4) (4), [(L1)CuII(CH3CO2)]·H2O (5·H2O), and [Co(Cp)2][(L1)CuI(NO2)(CH3CN)] (6). X-ray crystal structure determinations revealed distorted square-pyramidal coordination geometry around CuII ion in 1–5. Substitution of the H2O of 3 by nitrite quantitatively forms 2, featuring the κ2-O,O binding mode of NO2– to CuII. Reduction of 2 generates two CuI species, one with κ1-O and other with the κ1-N bonded NO2– group. The CuI analogue of 2, compound 6, was synthesized. The FTIR spectrum of 6reveals the presence of κ1-N bonded NO2–. Constant potential electrolysis corresponding to CuII → CuI reduction of a CH3CN solution of 2 followed by reaction with acids, CH3CO2H or HClO4 generates 5 or 3, and NO(g), identified electrochemically. The isolated CuI complex 6independently evolves one equivalent of NO(g) upon reaction with acids. Production of NO(g) was confirmed by forming [Co(TPP)NO] in CH2Cl2 (λmax in CH2Cl2: 414 and 536 nm, νNO = 1693 cm–1). | 
  Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation     Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin       DOI: 10.1021/jacs.9b11715     J . Am. Chem. Soc.  ASAP     訂正   雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。     誤: µ eff = 2.94  µ B ( S  =1/2)   正: µ eff =  1.88  µ B  ( S  =1/2)     Evans 法   NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。   以下は Supporting Information の記述である。     1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。   2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1   (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 )   3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 ...
コメント