Inorganic Chemistry
DOI: 10.1021/ic4016405
The new complexes [Ir(Cp*)(phpy)3,5-bis(trifluoromethyl)benzonitrile]+ (1-NCAr+) and [Ir(Cp*)(phpy)(styrene)]+ (1-Sty+, Cp* = η5-pentamethylcyclopentadienyl, phpy = 2-phenylene-κC1′-pyridine-κN) were prepared as analogues of reported iridium water oxidation catalysts, to study their reactions with oxygen atom transfer (OAT) reagents at low temperatures. In no case was the desired product, an Ir(V)oxo complex, observed by spectroscopy. Instead, ligand oxidation was implicated. Oxidation of 1-NCAr+ with the OAT reagent dimethyldioxirane (DMDO) yielded dioxygen when analyzed by GC, but formation of a heterogeneous or paramagnetic species was simultaneously observed. This amplifies uncertainty over the actual identity of iridium catalysts in the harsh oxidizing conditions required for water oxidation. Catalyst stability was then assessed for a reported styrene epoxidation mediated by [Ir(Cp*)(phpy)(OH2)]+ (1-OH2+). It was found that the OAT reagent iodosobenzene (PhIO) extensively oxidized the organic ligands of 1-OH2+. Acetic acid was detected as a decomposition product. In addition, both the molecular structure and the aqueous electrochemistry of 1-OH2+ are described for the first time. Oxidative scans revealed rapid decomposition of the complex. All of the above experiments indicate that degradation of the organic ligands in catalysts built with the Ir(Cp*)(phpy) framework are facile under oxidizing conditions. In separate experiments designed to promote ligand substitution, an unexpected silver-bridged, dinuclear Ir(III) species with terminal hydrides, [{Ir(Cp*)(phpy)H}2Ag]+ (2), was discovered. The source of Ag+ for complex 2 was identified as AgCl.
|
Ligand Redox Noninnocence in [Co III (TAML)] 0/– Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen, Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94 µ B ( S =1/2) 正: µ eff = 1.88 µ B ( S =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1. 常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2. 内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 : 共鳴周波数、 c : 常磁性種の濃度、 M : 常磁性種のモル質量 ) 3. 磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 ...
コメント