スキップしてメイン コンテンツに移動

Hemilabile Proton Relays and Redox Activity Lead to {FeNO}x and Significant Rate Enhancements in NO2− Reduction

Hemilabile Proton Relays and Redox Activity Lead to {FeNO}and Significant Rate Enhancements in NO2− Reduction

Pui Man Cheung,† Kyle T. Burns,† Yubin M. Kwon,† Megan Y. Deshaye,† Kristopher J. Aguayo,† Victoria F. Oswald,§ Takele Seda,⊥ Lev N. Zakharov,‡ Tim Kowalczyk,*,† and John D. Gilbertson*,†

DOI: 10.1021/jacs.8b08520
J. Am. Chem. Soc2018140, 1704017050



概要
筆者たちは、今までレドックス活性配位子にペンダントアミン部位を導入することで、電子、プロトンの両方を必要とする亜硝酸イオンの一酸化窒素への還元反応を可能にしてきました。
今回の論文では、立体構造を制御したペンダントアミン部位を導入することで、ペンダントアミン部位が中心金属に着脱可能になり、それによって亜硝酸イオン還元反応の初期速度の向上が見られたことを報告しています。



質問回答
Q1
ペンダントアミンを持たない錯体のNO付加反応の機構

今回hemilabilityを導入した錯体においては、中間体としてペンダントアミンが配位した錯体が生成していますが、hemilabilityを持たない錯体では亜硝酸イオンが代わりに配位した中間体が生成していると考えられます。

その2種類の中間体の安定性や生成速度の違いが、hemilabilityを有する錯体との初期速度の差を生んでいると考えられます。

Q2
初期速度で速度論をする理由

最終的な2分子の亜硝酸イオンの還元においては、ペンダントアミンの立体障害(つまりhemilability)は関係してきません。(赤と青の線に注目)

このことが示唆しているのは、1分子目の亜硝酸還元はhemilabilityによって加速されるが、2分子目の亜硝酸イオンの還元は、結局ペンダントアミンが外れて、hemilabilityを有していない錯体における反応中間体と同様の構造(亜硝酸イオンが配位した構造)を経由して反応が進行する必要があるということです。
また、最終的に2分子の亜硝酸イオンが還元される時間は、(ペンダントアミンのpKaが大きく変わらなければ)同じであることから、2分子の亜硝酸イオンの還元において2分子目の還元が律速段階であると言えます。
そのため、hemilabilityを有する錯体の速度増加を調べるには、1分子目の初期速度を比較するのが最も適しているのではないかと考えます。




コメント

Yuma Morimoto さんの投稿…
回答ありがとうございます。
Q2についての考察、とても鋭いと思います。

人気の投稿

雑誌会(200115)回答_藤田

Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94  µ B ( S  =1/2) 正: µ eff =  1.88  µ B  ( S  =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 ) 3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 4.      χ M から反磁性種のモル磁化率 χ Dia M を差し引いて常磁性種の正味のモル磁化率 χ P M を計算する(式3) 2 。 5.      得られた χ P M を式4に代入して有効磁気モーメントを

A low-spin Fe(iii) complex with 100-ps ligand- to-metal charge transfer photoluminescence

Authors: Pavel Chábera, Yizhu Liu, Om Prakash, Erling Thyrhaug, Amal El Nahhas, Alireza Honarfar, Sofia Essén, Lisa A. Fredin, Tobias C. B. Harlang, Kasper S. Kjær, Karsten Handrup, Fredric Ericson, Hideyuki Tatsuno, Kelsey Morgan, Joachim Schnadt, Lennart Häggström, Tore Ericsson, Adam Sobkowiak, Sven Lidin, Ping Huang, Stenbjörn Styring, Jens Uhlig, Jesper Bendix, Reiner Lomoth, Villy Sundström, Petter Persson & Kenneth Wärnmark Nature 543, 695–699 (30 March 2017) doi:10.1038/nature21430 Received 03 August 2016 Accepted 23 January 2017 Published online 29 March 2017 https://www.nature.com/nature/journal/v543/n7647/pdf/nature21430.pdf 解説記事: Making iron glow 蛍光を発する鉄(III)錯体ができたというNatureの論文です。 だからなんだよ?と思うかもしれませんが、鉄の錯体を光らせることは非常に難しいとされてきました。 ルテニウム(II)やイリジウム(III)といった第五、第六周期の遷移金属錯体では、高い発光量子収率をもった(より、効率的に光る)錯体が数多く知られています。 一方で、配位子場分裂がルテニウムなどと比べて小さな鉄錯体では、MLCT励起で生成した電子配置と、鉄のtg電子が一つだけegへと励起した電子配置が近いため、非常に早く電子が鉄へと戻ってきてしまうためです ( Anal.Chem.63, 829A–837A

180523_雑誌会回答(伊藤)

Q. ナフタレンの水酸化の位置選択制について。 A. 今回、ナフタレンのHOMOの軌道について(電子が取られてナフタレンラジカルカチオンが生成して反応が始まるので)考えると、ナフタレンの軌道はベンゼンとブタジエンのπ軌道の相互作用から考えることができます。 ブタジエンの軌道 2 (青) は反対称でかつエネルギーが高く不安定であるため、この軌道がナフタレンのHOMOの主成分となり、ベンゼンの反対称軌道 3,5 (赤) との相互作用を考える必要があることが予想されます。 例えば、軌道 3 と軌道 2 からできる軌道は同符号同士の重なりから結合性が増加し軌道 3 より安定化した軌道Aと逆の理論から不安定化した軌道Bが構成されます。 また第二段階として軌道Bと軌道 5 の相互作用を考えますが、軌道Bは被占軌道で軌道 5 は空軌道であることからHOMO軌道への寄与は軌道Bの方が格段に大きいことがわかります。それゆえ、ナフタレンのHOMO軌道への寄与は単体ブタジエンと同じであることになり、α位がβ位よりも大きいという風になります。 そのため本文中でも示したように1,4-ジナフトールを経て、1,4-ナフトキノンが酸化生成物として得られるのが妥当だと言えます。

Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases

https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00187?rand=gzylk8tq Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars Department of Process Research & Development, MRL, Merck & Co., Inc. United States Org. Process Res. Dev. 2019, ASAP メルクの社員さんの論文です。DBUなどのアミジン、あるいはグアニジン構造を持った塩基が、ゆっくりと加水分解していることを報告しています。薬の研究中にそれに気付いて、ちゃんと報告せねばならんと思ったと書いてあります(偉い人たちですね)。 上の表の塩基について実験しています。微量の水から水酸化物イオンが出て、それにより加水分解が始まるので、たとえば水溶液にしたときに、pHが11.6以下なら分解しないそうです。 TBDという塩基、DBUより強いので、使ってみても良さそうですね。

Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis

Daniel Langford, Inigo Göttker-Schnetmann, Florian P. Wimmer, Larissa A. Casper, Philip Kenyon, Rainer F. Winter, Stefan Mecking* Publication Date:July 3, 2019 https://doi.org/10.1021/acs.organomet.9b00332 Copyright © 2019 American Chemical Society Organometallics の論文です。ニッケル触媒の仕事、というよりカウンターアニオンとして新たに合成された、ペンタフルオロスルファニル基(-SF6)を有するボレートが渋いので、紹介します。 近年、トリフルオロメチル基は高い電子求引性を有する置換基として大活躍していますが、同様に高い電子求引性を有するSF6基は、"スーパー"トリフルオロメチル基としての地位を確立しつつあるそうです。 我々のグループでもよく用いているテトラフェニルボレートアニオン(BPh4-)は、優れた対アニオンですが、酸化剤と反応してしまうこともあることが知られています。カーリンらのグループ?からは、フェニル基の3,5位に、電子求引性の高いCF3を導入した錯体を用いると、活性種の安定性が大きく変わることを報告しているようです。このようなアニオンはBArFと呼ばれて親しまれています(下図左)。 本論文で著者らは、対応するグリニャール試薬とBCl3を反応させることで、下図右のカウンターアニオン、S-BArFを新たに合成しています。高い電子求引性による電荷の分散効果と、立体によるホウ素中心への攻撃の阻害が期待されます。 250°Cくらいまで、熱には安定なようです。筆者らは、ニッケル錯体の対アニオンとしてこのアニオンを利用したところ、重合触媒活性があがったと報告しています。ニッケル錯体と、対アニオンの相互作用が小さいこと、対アニオンの安定性が高いことなどの理由があると思います(このあたりはちゃんと読んでいません)。 計算したところ、HOMOの非局在化具合はBArF、S-BArFとあまり変わらない(それぞれ、92%、93%)ようですが、LUMOがS-BArFで