スキップしてメイン コンテンツに移動

Tetrahedral nickel(II) and cobalt(II) bis-o-iminobenzosemiquinonates


 Irina V. Ershova, a  Ivan V. Smolyaninov,b  Artem S. Bogomyakov, c
 Matvey V. Fedin, c  Andrey G. Starikov, d  Anton V. Cherkasov, a
 Georgy K. Fukin a  and Alexandr V. Piskunov *a


 本論文では、bis-o-iminobenzosemiquinonateを配位子として用いたCo, Ni錯体(imSQt-Bu)2M (M = Ni (1), Co (2))の合成、同定を行なってます。ここで用いられているimSQは、4,6-di-tert-butyl-N-(tert-butyl)-o-iminobenzoquinoneのラジカルアニオン体です。各錯体は下に示すようなスキームに従って合成されていました。




 錯体1,2はXRDによって構造が明らかにされており、中心金属に対して歪んだ四面体構造をとっており、中心金属とimSQ配位子との配位結合角は約80ºであるとされています。磁化率測定によって得られた構造、分光学的データによると、錯体1,2におけるNi,Coはそれぞれハイスピン状態(Ni(II): d8, S = 1, Co(II):d7, S = 3/2をとっており、二つの配位子ラジカル(Srad = 1/2)と結合していることが明らかにされました。これによって、金属-配位子間で強い反強磁性相互作用を起こし、基底状態において錯体1,2はそれぞれSt = 0, St = 1/2の電子状態をとっていることが示唆されました。これらの結果は、UB3LYP/6-311++G(d,p)を用いたDFT計算によって導き出された値と良い一致を示しました。

 各錯体のCV測定によって、カソード側において[M(AP2)2-]と[(imSQ)M(AP)]1-の二つのアニオン生成に対応する擬可逆的な一電子移動の還元波をもつことが確認されました。この全ての還元過程は、配位子ベースで起こっていること考えられています。



  本研究で用いられているo-iminobenzosemiquinoneは、室温において安定にラジカルアニオンとして存在することが、この論文において主張されており、NMRやEPRなどのスペクトル測定の結果からも明らかであることがわかります。配位子ジラジカルの状態でこの錯体が安定化されることの理由として、筆者らは、配位子のN-tert-Butyl基の立体的効果によって、錯体が四面体構造で安定化されるということが書かれておりました。これよりCo,Niがハイスピン状態を取ることから、d電子のもつ不対電子と配位子ラジカルの不対電子との間での反強磁性相互作用を起こすことよって、上のようなジラジカル状態で安定化されるということがDFT計算の結果等から考察されていました。

コメント

人気の投稿

雑誌会(200115)回答_藤田

Ligand Redox Noninnocence in  [Co III (TAML)] 0/–   Complexes Affects Nitrene Formation Nicolaas P. van Leest, Martijn A. Tepaske, Jean-Pierre H. Oudsen,  Bas Venderbosch, Niels R. Rietdijk, Maxime A. Siegler, Moniek Tromp, Jarl Ivar van der Vlugt, and Bas de Bruin DOI: 10.1021/jacs.9b11715 J . Am. Chem. Soc. ASAP 訂正 雑誌会スライド8、9枚目の [Co III (TAML sq )] – の有効磁気モーメントの数値が [Co III (TAML red )] – のものになっていましたので、訂正致します。 誤: µ eff = 2.94  µ B ( S  =1/2) 正: µ eff =  1.88  µ B  ( S  =1/2) Evans 法 NMR によって常磁性化合物の磁化率を求める方法。以下の式1– 5によって磁化率、有効磁気モーメントおよびスピン量子数 S が得られる。 以下は Supporting Information の記述である。 1.      常磁性種、内部標準を含んだ溶液を入れた NMR チューブの中に、内部標準だけを含んだ溶液を入れたキャピラリーを入れ、 NMR を測定する。 2.      内部標準のピークのシフト幅 Δν から磁化率 χ (cm 3 g -1 )を 計算する(式1)。 1 (ν 0 :  共鳴周波数、 c : 常磁性種の濃度、 M :  常磁性種のモル質量 ) 3.      磁化率 χ に M を 掛けること で、モル磁化率 χ M (cm 3 mol -1 )を 計算する(式2)。 ...

A low-spin Fe(iii) complex with 100-ps ligand- to-metal charge transfer photoluminescence

Authors: Pavel Chábera, Yizhu Liu, Om Prakash, Erling Thyrhaug, Amal El Nahhas, Alireza Honarfar, Sofia Essén, Lisa A. Fredin, Tobias C. B. Harlang, Kasper S. Kjær, Karsten Handrup, Fredric Ericson, Hideyuki Tatsuno, Kelsey Morgan, Joachim Schnadt, Lennart Häggström, Tore Ericsson, Adam Sobkowiak, Sven Lidin, Ping Huang, Stenbjörn Styring, Jens Uhlig, Jesper Bendix, Reiner Lomoth, Villy Sundström, Petter Persson & Kenneth Wärnmark Nature 543, 695–699 (30 March 2017) doi:10.1038/nature21430 Received 03 August 2016 Accepted 23 January 2017 Published online 29 March 2017 https://www.nature.com/nature/journal/v543/n7647/pdf/nature21430.pdf 解説記事: Making iron glow 蛍光を発する鉄(III)錯体ができたというNatureの論文です。 だからなんだよ?と思うかもしれませんが、鉄の錯体を光らせることは非常に難しいとされてきました。 ルテニウム(II)やイリジウム(III)といった第五、第六周期の遷移金属錯体では、高い発光量子収率をもった(より、効率的に光る)錯体が数多く知られています。 一方で、配位子場分裂がルテニウムなどと比べて小さな鉄錯体では、MLCT励起で生成した電子配置と、鉄のtg電子が一つだけegへと励起した電子配置が近いため、非常に早く電子が鉄へと戻ってきてしまうためです ( Anal.Chem.63, 829A–837A ...

Investigating the Underappreciated Hydrolytic Instability of 1,8-Diazabicyclo[5.4.0]undec-7-ene and Related Unsaturated Nitrogenous Bases

https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.9b00187?rand=gzylk8tq Alan M. Hyde, Ralph Calabria, Rebecca Arvary, Xiao Wang, Artis Klapars Department of Process Research & Development, MRL, Merck & Co., Inc. United States Org. Process Res. Dev. 2019, ASAP メルクの社員さんの論文です。DBUなどのアミジン、あるいはグアニジン構造を持った塩基が、ゆっくりと加水分解していることを報告しています。薬の研究中にそれに気付いて、ちゃんと報告せねばならんと思ったと書いてあります(偉い人たちですね)。 上の表の塩基について実験しています。微量の水から水酸化物イオンが出て、それにより加水分解が始まるので、たとえば水溶液にしたときに、pHが11.6以下なら分解しないそうです。 TBDという塩基、DBUより強いので、使ってみても良さそうですね。

Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis

Daniel Langford, Inigo Göttker-Schnetmann, Florian P. Wimmer, Larissa A. Casper, Philip Kenyon, Rainer F. Winter, Stefan Mecking* Publication Date:July 3, 2019 https://doi.org/10.1021/acs.organomet.9b00332 Copyright © 2019 American Chemical Society Organometallics の論文です。ニッケル触媒の仕事、というよりカウンターアニオンとして新たに合成された、ペンタフルオロスルファニル基(-SF6)を有するボレートが渋いので、紹介します。 近年、トリフルオロメチル基は高い電子求引性を有する置換基として大活躍していますが、同様に高い電子求引性を有するSF6基は、"スーパー"トリフルオロメチル基としての地位を確立しつつあるそうです。 我々のグループでもよく用いているテトラフェニルボレートアニオン(BPh4-)は、優れた対アニオンですが、酸化剤と反応してしまうこともあることが知られています。カーリンらのグループ?からは、フェニル基の3,5位に、電子求引性の高いCF3を導入した錯体を用いると、活性種の安定性が大きく変わることを報告しているようです。このようなアニオンはBArFと呼ばれて親しまれています(下図左)。 本論文で著者らは、対応するグリニャール試薬とBCl3を反応させることで、下図右のカウンターアニオン、S-BArFを新たに合成しています。高い電子求引性による電荷の分散効果と、立体によるホウ素中心への攻撃の阻害が期待されます。 250°Cくらいまで、熱には安定なようです。筆者らは、ニッケル錯体の対アニオンとしてこのアニオンを利用したところ、重合触媒活性があがったと報告しています。ニッケル錯体と、対アニオンの相互作用が小さいこと、対アニオンの安定性が高いことなどの理由があると思います(このあたりはちゃんと読んでいません)。 計算したところ、HOMOの非局在化具合はBArF、S-BArFとあまり変わらない(それぞれ、92%、93%)ようですが、LUMOがS-BArFで...

High-Energy-Resolution Fluorescence-Detected X‑ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase

Rebeca G. Castillo,† Rahul Banerjee,‡ Caleb J. Allpress,§ Gregory T. Rohde,§ Eckhard Bill,† Lawrence Que, Jr.,*,§ John D. Lipscomb,*,‡ and Serena DeBeer*,† † Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany ‡ Department of Biochemistry, Molecular Biology, and Biophysics and § Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States http://pubs.acs.org/doi/10.1021/jacs.7b09560 HERFD XASを用いて、sMMOの活性部位の構造について議論しています。 まだ実験、計算が必要だが、オープンコアの構造を有していると著者らは述べています。